MATLAB Program to Remove SPECKLE NOISE m file
Speckle is a granular 'noise' that inherently exists in and degrades the quality of the active radar, synthetic aperture radar (SAR), medical ultrasound and optical coherence tomography images.
The vast majority of surfaces, synthetic or natural, are extremely rough on the scale of the wavelength. Images obtained from these surfaces by coherent imaging systems such as laser, SAR, and ultrasound suffer from a common phenomenon called speckle. Speckle, in both cases, is primarily due to the interference of the returning wave at the transducer aperture. The origin of this noise is seen if we model our reflectivity function as an array of scatters. Because of the finite resolution, at any time we are receiving from a distribution of scatters within the resolution cell. These scattered signals add coherently; that is, they add constructively and destructively depending on the relative phases of each scattered waveform. Speckle noise results from these patterns of constructive and destructive interference shown as bright and dark dots in the image.
Speckle noise in conventional radar results from random fluctuations in the return signal from an object that is no bigger than a single image-processing element. It increases the mean grey level of a local area.
Speckle noise in SAR is generally serious, causing difficulties for image interpretation. It is caused by coherent processing of backscattered signals from multiple distributed targets. In SAR oceanography, for example, speckle noise is caused by signals from elementary scatters, the gravity-capillary ripples, and manifests as a pedestal image, beneath the image of the sea waves.
The speckle can also represent some useful information, particularly when it is linked to the laser speckle and to the dynamic speckle phenomenon, where the changes of the speckle pattern, in time, can be a measurement of the surface's activity.
The vast majority of surfaces, synthetic or natural, are extremely rough on the scale of the wavelength. Images obtained from these surfaces by coherent imaging systems such as laser, SAR, and ultrasound suffer from a common phenomenon called speckle. Speckle, in both cases, is primarily due to the interference of the returning wave at the transducer aperture. The origin of this noise is seen if we model our reflectivity function as an array of scatters. Because of the finite resolution, at any time we are receiving from a distribution of scatters within the resolution cell. These scattered signals add coherently; that is, they add constructively and destructively depending on the relative phases of each scattered waveform. Speckle noise results from these patterns of constructive and destructive interference shown as bright and dark dots in the image.
Speckle noise in conventional radar results from random fluctuations in the return signal from an object that is no bigger than a single image-processing element. It increases the mean grey level of a local area.
Speckle noise in SAR is generally serious, causing difficulties for image interpretation. It is caused by coherent processing of backscattered signals from multiple distributed targets. In SAR oceanography, for example, speckle noise is caused by signals from elementary scatters, the gravity-capillary ripples, and manifests as a pedestal image, beneath the image of the sea waves.
The speckle can also represent some useful information, particularly when it is linked to the laser speckle and to the dynamic speckle phenomenon, where the changes of the speckle pattern, in time, can be a measurement of the surface's activity.
No comments