Impact-Site-Verification: dbe48ff9-4514-40fe-8cc0-70131430799e

Search This Blog

Gaussian elimination with backward substitution

 MATLAB Program:

 % Gaussian elimination with backward substitution

 n=input('Enter number of equations, n:  ');
 A = zeros(n,n+1);
 x = zeros(1,n);

 A=[4 2 3 8; 3 -5 2 -14; -2 3 8 27];

 nn = n-1; m = n+1;
 ichg = 0;
 i = 1;
 while i <= nn
    ip = i;
    while abs(A(ip,i)) <= 1.0e-20 & ip <= n
       ip = ip+1;
    end
    if ip == m
        fprinff('Method fails');
    else
        if ip ~= i
           for jj = 1:m
              c = A(i,jj);
              A(i,jj) = A(ip,jj);
              A(ip,jj) = c;
            end
            ichg = ichg+1;
        end
        jj = i+1;
        for j = jj:n
             xm = A(j,i)/A(i,i);
             for k = jj:m
                  A(j,k) = A(j,k) - xm * A(i,k);
             end
             A(j,i) = 0;
        end
     end
     i = i+1;
 end




 if abs(A(n,n)) <= 1.0e-20
    fprinff('Method fails \n');
 else
     x(n) = A(n,m) / A(n,n);
     for k = 1:nn
        i = nn-k+1;
        jj = i+1;
        sum = 0;
        for kk = jj:n
            sum = sum - A(i,kk) * x(kk);
        end
        x(i) = (A(i,m)+sum) / A(i,i);
     end
     fprintf('\n\nThe reduced system is: \n');
     for i = 1:n
        for j = 1:m
            fprintf(' %11.8f', A(i,j));
        end
        fprintf('\n');
     end
     fprintf('\nThe system has the solution:\n');
     for i = 1:n
         fprintf('           %11.8f  \n', x(i));
     end
 end
%Gaussian_Elimination_final.m
%Displaying Gaussian_Elimination_final.m.


Output:

Enter number of equations, n:  3


The reduced system is: 
  4.00000000  2.00000000  3.00000000  8.00000000
  0.00000000 -6.50000000 -0.25000000 -20.00000000
  0.00000000  0.00000000  9.34615385 18.69230769

The system has the solution:
           -1.00000000  
            3.00000000  
            2.00000000

No comments

Popular Posts

Followers