Impact-Site-Verification: dbe48ff9-4514-40fe-8cc0-70131430799e

Search This Blog

Newton's Divided Difference for Numerical Interpolation using MATLAB(mfile)



MATLAB Program:

% Newton's divided difference
 % Find the approximate value of f(1.5) from
 % (x,y)= (0,1), (1,e), (2,e^2) & (3,e^3).

 n = input('Enter n for (n+1) nodes, n:  ');
 x = zeros(1,n+1);
 y = zeros(n+1,n+1);

 for i = 0:n
   fprintf('Enter x(%d) and f(x(%d)) on separate lines:  \n', i, i);
   x(i+1) = input(' ');
   y(i+1,1) = input(' ');
 end
 x0 = input('Now enter a point at which to evaluate the polynomial, x = ');

 n = size(x,1);
 if n == 1
    n = size(x,2);
 end

 for i = 1:n
    D(i,1) = y(i);
 end

 for i = 2:n
    for j = 2:i
       D(i,j)=(D(i,j-1)-D(i-1,j-1))/(x(i)-x(i-j+1));
    end
 end

 fx0 = D(n,n);
 for i = n-1:-1:1
    fx0 = fx0*(x0-x(i)) + D(i,i);
 end
fprintf('Newtons iterated value: %11.8f \n', fx0)


OUTPUT:

>> Newtons_divided_difference
Enter n for (n+1) nodes, n:  3
Enter x(0) and f(x(0)) on separate lines:  
 0
 1
Enter x(1) and f(x(1)) on separate lines:  
 1
 2.7
Enter x(2) and f(x(2)) on separate lines:  
 2
 7.29
Enter x(3) and f(x(3)) on separate lines:  
 3
 19.683
Now enter a point at which to evaluate the polynomial, x = 1.5
Newtons iterated value:  4.32668750 
>> 


No comments

Popular Posts

Followers