Singular Value Decomposition (SVD) using MATLAB
MATLAB Programs:
% Singular Value Decomposition (SVD)
A=[4 2 3; 3
-5 2; -2 3 8]; % Square matrix A
B=[4 2 3 8; 3
-5 2 -14; -2 3 8 27]; % Rectangular matrix B
fprintf('SVD for the matrix A: \n');
[U, S,
V]=svd(A)
fprintf('\n\nSVD for the matrix B: \n');
[U, S,
V]=svd(B)
>> svd_code
SVD for the matrix A:
U =
0.3572 0.3823 -0.8522
-0.0380 0.9176 0.3957
0.9332 -0.1090 0.3423
S =
9.2534 0 0
0 6.4751 0
0 0 4.0556
V =
-0.0596 0.6950 -0.7166
0.4003 -0.6410 -0.6549
0.9144 0.3259 0.2400
SVD for the matrix B:
U =
-0.2574 -0.4506 -0.8548
0.4300 -0.8456 0.3163
-0.8654 -0.2862 0.4114
S =
32.6661 0 0 0
0 6.9982 0 0
0 0 4.1169 0
V =
0.0610 -0.5383 -0.7999 0.2582
-0.1610 0.3527 -0.4996 -0.7746
-0.2092 -0.7620 0.3301 -0.5164
-0.9626 0.0725 -0.0388 0.2582
No comments