What Is Deep Learning Toolbox? - Deep Learning Toolbox Overview
Deep Learning Toolbox™ provides a framework for designing and implementing deep neural networks with algorithms, pretrained models, and apps. You can use convolutional neural networks (ConvNets, CNNs) and long short-term memory (LSTM) networks to perform classification and regression on image, time-series, and text data. You can build network architectures such as generative adversarial networks (GANs) and Siamese networks using automatic differentiation, custom training loops, and shared weights. With the Deep Network Designer app, you can design, analyze, and train networks graphically. The Experiment Manager app helps you manage multiple deep learning experiments, keep track of training parameters, analyze results, and compare code from different experiments. You can visualize layer activations and graphically monitor training progress.
You can exchange models with TensorFlow™ and PyTorch through the ONNX format and import models from TensorFlow-Keras and Caffe. The toolbox supports transfer learning with DarkNet53, ResNet-50, NASNet, SqueezeNet and many other pretrained models.
You can speed up training on a single- or multiple-GPU workstation (with Parallel Computing Toolbox™), or scale up to clusters and clouds, including NVIDIA® GPU Cloud and Amazon EC2® GPU instances (with MATLAB Parallel Server™).
You can exchange models with TensorFlow™ and PyTorch through the ONNX format and import models from TensorFlow-Keras and Caffe. The toolbox supports transfer learning with DarkNet53, ResNet-50, NASNet, SqueezeNet and many other pretrained models.
You can speed up training on a single- or multiple-GPU workstation (with Parallel Computing Toolbox™), or scale up to clusters and clouds, including NVIDIA® GPU Cloud and Amazon EC2® GPU instances (with MATLAB Parallel Server™).
No comments