Impact-Site-Verification: dbe48ff9-4514-40fe-8cc0-70131430799e

Search This Blog

Demonstration of Facial Expression Recognition Using LBP Feature

%Model Training:

clc;

clear all;

close all;

warning off;

imds=imageDatastore('Mj','IncludeSubFolders',true,'LabelSource','foldernames');

trainingFeatures=[];

trainingLabels=imds.Labels;      

for i = 1:numel(imds.Files)         % Read images using a for loop

    img = readimage(imds,i);

    trainingFeatures(i,:)=extractLBPFeatures(rgb2gray(img));

end

Classifier =fitcecoc(trainingFeatures,trainingLabels);

save Classifier Classifier

 

%Testing:

clc

clear all

close all

warning off;

load Classifier;

cao=webcam;

faceDetector=vision.CascadeObjectDetector;

while true

    e=cao.snapshot;

    bboxes =step(faceDetector,e);

    if(~isempty(bboxes))

    es=imcrop(e,bboxes);

    es=imresize(es,[128 128]);

    es=rgb2gray(es);

    [Features] = extractLBPFeatures(es);

    PredictedClass=predict(Classifier,Features);

    PredictedClass=char(PredictedClass);

    imshow(e),title(PredictedClass);

    ax=gca;

    ax.TitleFontSizeMultiplier=1.5;

    pause(0.1);

    else

      imshow(e);

      ax=gca;

      title('Face Not Detected');

       ax.TitleFontSizeMultiplier=2;

      pause(0.1);

    end

end

 %Code to create Database:

clc

clear all

close all

warning off;

cao=webcam;

faceDetector=vision.CascadeObjectDetector;

c=150;

temp=0;

while true

    e=cao.snapshot;

    bboxes =step(faceDetector,e);

    if(sum(sum(bboxes))~=0)

    if(temp>=c)

        break;

    else

    es=imcrop(e,bboxes(1,:));

    es=imresize(es,[128 128]);

    filename=strcat(num2str(temp),'.bmp');

    imwrite(es,filename);

    temp=temp+1;

    imshow(es);

    drawnow;

    end

    else

        imshow(e);

        drawnow;

    end

end

 



Join us on Telegram: https://t.me/matlabcastor

No comments

Popular Posts

Followers