Building a k-Nearest Neighbor algorithm with the Iris dataset | MATLAB
%Code:
clc
clear all
close all
warning off
load fisheriris
x=meas(:,3);
y=meas(:,4);
c=species;
output=[];
m=c;
k=input('Enter
the k value');
ersa=input('Enter
number of test datapoints:');
for
i=1:ersa
a=input('Enter
the first parameter value of the test:');
b=input('Enter
the second parameter value of the test:');
distance=[];
for
i=1:length(x)
   
e=sqrt((x(i)-a)^2+(y(i)-b)^2);
    distance=[distance e];
end
temp=0;
gemp=0;
for
i=1:length(distance)
    for j=1:(length(distance)-i)
        if(distance(j)>distance(j+1))
           
temp=distance(j);
           
distance(j)=distance(j+1);
           
distance(j+1)=temp;
            gemp=c{j};
            c{j}=c{j+1};
            c{j+1}=gemp;
        end
    end
end
classy={};
for
i=1:k
    classy{i}=c{i};
end
tabulate(classy);
classy=string(classy);
output=[output mode(classy)];
c=m;
end
 
 
 
 
 
 
%206th%20Edition,%20Kindle%20Edition.jpg) 
 
 
 Posts
Posts
 
 
 
 
 
 
 
 
No comments